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Abstract 

AI models of the mind rarely discuss the so called “hard 
problem” of consciousness. Here, I will sketch informally a 
possible functional explanation for phenomenal 
consciousness: the conductor theory of consciousness (CTC). 
Unlike IIT, CTC is a functionalist model of consciousness, 
with similarity to other functionalist approaches, such as the 
ones suggested by Dennett and Graziano. 
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“No computer has ever been designed that is ever aware of 
what it's doing; but most of the time, we aren't either.” 

 – Marvin Minsky 

Introduction: Artificial Intelligence as a 
computational science of the mind 

Understanding the nature of our minds and their relationship 
to the universe has always been one of the most significant 
questions philosophy sought to address.  

For centuries, scientists and philosophers emphasized the 
role of mathematics in this quest. The discovery of the idea 
of computation and its formalization in the 1920ies by Alan 
Turing and Alonzo Church paved the way to a new way of 
thinking about thinking, and replaced the old intuitions of 
mechanistic philosophy with more precise ones of 
computationalism, and opened up the way of building the 
new family of theories  of computational systems.  

The relationship between mathematics and computation is 
not trivial, and even though computation is defined 
mathematically (and constructive mathematics is arguably 
computational), it makes sense to understand them as 
separate realms. Mathematics is the domain of all formal 
languages, and allows the expression of arbitrary statements 
(most of which are uncomputable). Computation may be 
understood in terms of computational systems, for instance 
via defining states (which are sets of discernible differences, 
i.e. bits), and transition functions that let us derive new 
states. Whereas mathematics is the realm of specification, 
computation is the realm of implementation; it captures all 
those systems that can actually be realized.  

Computational systems are machines that can be 
described apriori and systematically, and implemented on 
every substrate that elicits the causal properties that are 
necessary to capture the respective states and transition 
functions.  

 

The absence of an understanding of substrate independent 
machines lead Leibniz to the rejection of mechanist 
philosophy:  “Perception, and what depends on it i.e., 
cognition], is inexplicable in a mechanical way, that is, 
using figures and motions. Suppose there would be a 
machine, so arranged as to bring forth thoughts, 
experiences and perceptions; it would then certainly be 
possible to imagine it to be proportionally enlarged, in such 
a way as to allow entering it, like into a mill. This 
presupposed, one will not find anything upon its 
examination besides individual parts, pushing each other—
and never anything by which a perception could be 
explained.”  (1714). Conversely, its inkling prompted Julien 
Offray de LaMettrie’s (1748) remark that while minds are 
machines, these had to be thought of as “immortal” and 
“transcendental”.  

Computation is sometimes seen in opposition to 
dynamical systems (see van Gelder 1998), and we can 
distinguish different classes of computational systems to 
account for that, based on the classes of functions they can 
compute effectively (in the unlimited case) and efficiently 
(with reasonably bounded resources), starting from 
(deterministic or probabilistic) finite state machines over 
Turing Machines to different classes of hyper-computers 
capable of continuous state change or even a-causal 
computers that may allow a transition function to use 
information from a future state of the machine. We find that 
while dynamical systems often cannot be effectively 
computed on a finite state machine (such as a von Neumann 
computer), they can often be efficiently approximated. (The 
metaphysical implications of whether our universe can only 
realize finite state machines or hyper-computation are 
profound and sometimes of concern in the philosophy of 
mind, but outside the scope of this discussion.) 

The formation of a new, computational study of the mind 
was fraught with difficulty from the start. By the 1950ies, 
the influence of positivism had lead to the emergence and 
entrenchment of behaviorism in psychology, which stifled 
theoretical psychology and made it evidently impossible for 
psychologists to formulate comprehensive theories of the 
mind, so a new discipline was established: Artificial 
Intelligence was the attempt of thinkers like Marvin 
Minsky, John McCarthy and others to treat the mind as a 
computational system, and thereby open its study to 
experimental exploration by building computational 
machines that would attempt to replicate the functionality of 
minds.  

 



Artificial Intelligence soon formed two camps: one that 
was dedicated to the study of intelligence, and one that 
focused on the automation of tasks that required human 
intelligence. While both camps developed applications and 
theories and often worked on similar systems, the rift 
between “cognitive AI “ and “narrow AI” widened, partly 
because large factions of the cognitive AI camp championed 
symbolic approaches and rejected neural learning as 
simplistic. The failure to deliver on some of the early, 
optimistic promises of machine intelligence, as well as 
cultural opposition, lead to cuts in funding for cognitive AI, 
and eventually the start of the new discipline of Cognitive 
Science. However, Cognitive Science did not develop a 
cohesive methodology and theoretical outlook, and became 
an umbrella term for neuroscience, AI, cognitive 
psychology, linguistics and philosophy of mind. 

In the last five years, AI research has been dominated by 
the success of deep learning, which was fueled by 
theoretical insights into the training of neural networks with 
a large number of hidden layers, advances in computer 
hardware, and partially by the availability of large amounts 
of training data. The rapid advances of learning machines 
have lead to a renewed interest in the original goals of AI, as 
well as the dissemination and development of ideas on the 
nature of learning, perception, and mental representation. 
However, the recent progress was arguably driven by 
successes in the narrow AI camp, and AI as a field is not 
very much concerned with the study of minds any more. 
Progress on this front will likely require a better 
understanding of our mental architecture, reasoning, 
language, reflection, self model and consciousness.  

Consciousness in cognitive science 
While AI offers a large body of work on agency, autonomy, 
motivation and affect, cognitive architectures and cognitive 
modeling, there is little agreement on how to address what is 
usually called “the hard problem” of consciousness. How is 
it possible that a system can take a first person perspective, 
and have phenomenal experience? 

One of the better known recent attempts to address 
phenomenal consciousness is Guilio Tononi’s Integrated 
Information Theory (IIT) (2012, 2016), which has been 
championed by the neuroscientist Christof Koch and the 
physicist Max Tegmark (2014).  Perhaps not entirely unlike 
Leibniz, Tononi argues that experience cannot be reduced to 
a functional mechanism, and hence it must be an intrinsic 
property of a system, rather than a functional one. He 
characterizes consciousness by a parameter, Φ, which is a 
measure for the amount of mutual information over all 
possible partitionings of an information processing system. 
If the information in the system is highly integrated (i.e. the 
information in each part of the system is strongly correlated 
with the information in the others), it indicates a high degree 
of consciousness. As has for instance been argued by 
Aaronson (2015), IIT’s criterion of information integration 
could perhaps be necessary, but is not sufficient, because we 
can construct structurally trivial information processing 

systems that maximize Φ by maximally distributing 
information (for instance via highly interconnected XOR 
gates). Should we assign consciousness to processing 
circuits that are incapable of exhibiting any of the 
interesting behaviors of systems that we usually suspect to 
be conscious, such as humans and other higher animals? 

From a computationalist perspective, IIT is problematic, 
because it suggests that two systems that compute the same 
function by undergoing a functionally identical sequence of 
states might have different degrees of consciousness based 
on the arrangement of the computational elements that 
realize the causal structure of the system. A computational 
system might turn out to be conscious or unconscious 
regardless of its behavior (including all its utterances 
professing its phenomenal experience) depending on the 
physical layout of its substrate, or the introduction of a 
distributed virtual machine layer.  

A more practical criticism stems from observing 
conscious and unconscious people: a somnambulist (who is 
generally not regarded as conscious) can often answer 
questions, navigate a house, open doors etc., and hence 
should have cortical activity that is distributed in a similar 
way as it is in an awake, conscious person (Zadra et al. 
2013). In this sense, there is probably only a low 
quantitative difference in Φ, but a large qualitative 
difference in consciousness. This qualitative difference can 
probably be explained by the absence of very particular, 
local functionality in the brain of the somnambulist: while 
her cortex still produces the usual content, i.e. processes 
sensory data and generates dynamic experiences of sounds, 
patterns, objects, spaces etc. from them, the part that 
normally attends to that experience and integrates it into a 
protocol is offline. This integrated experience is not the 
same as information integration in IIT. Rather, it is better 
understood as a particular local protocol by one of the many 
members of the “cortical orchestra” : its conductor. 
 
In this contribution, I will sketch how a computational 
model can account for the phenomenology and functionality 
of consciousness, based on my earlier work in the area of 
cognitive architectures (Bach 2009); we might call this 
approach the “conductor theory of consciousness” (CTC).  
 

An AI perspective on the mind 
Organisms evolved information processing capabilities to 
support the regulation of their systemic demands in the face 
of the disturbances by the environment. The simplest 
regulator system is the feedback loop: a system that 
measures some current value and exerts a control operation 
that brings it close to a target value. Using a second 
feedback loop to regulate the first, the system can store a 
state and regulate one value depending on another. By 
changing the control variables to maximize a measured 
reward variable, a system can learn to approximate a 
complex control function that maps the values of a set of 
inputs (sensors) to operators (effectors). 



Our nervous systems possess a multitude of feedback loops 
(such as the mechanisms of the brain stem regulating heart 
rate and breathing patterns).  
 
 

 
 

Figure 1. From needs to cognition 
 
The control of behavior requires more complex signals; the 
sensors of the limbic system measure changes in organismic 
demands and respond to satisfaction of needs with pleasure 
signals (indicating to intensify the current behavior). The 
frustration of needs leads to displeasure signals (pain) which 
indicate the current behavior should be stopped. 
 
Directed behavior of a system may be governed by 
impulses, which associate situations (complex patterns in 
the outer or inner environment of the organism) with 
behavior to obtain future pleasure, or avoid future pain. Pain 
and pleasure act as reward signals that establish an 
association between situations, actions and needs (see Bach 
2015). In mammals, such connections are for instance 
established in the hippocampus (see for instance Cer and 
O’Reilly 2006).  
 
The human neocortex enables better regulation of needs by 
encoding sensory patterns into a complex hierarchical model 
of the environment (including the inner environment).  This 
dynamic model is not just a mapping from past observation 
to future observations, but takes on the shape of a 

progressively updated stateful function, a program that 
generates a simulation of the environment. 
 
The formation of the model is driven largely by data 
compression, i.e. by optimizing for the data structure that 
allows the best predictions of future observations, based on 
past observations.  This principle has for instance been 
described by Ray Solomonoff (1964): The best possible 
model that a computational agent can form about its 
environment is the shortest program among those that best 
predict an observation from past observations, for all 
observations and past observations. 
 
Machine learning models of the mind can be understood as 
approximating Solomonoff induction (see Hutter 2005), by 
capturing the apparent invariances of the world into an 
almost static model, and its variance as a variable state of 
that model. By varying the state, such a model cannot only 
capture the current state of the world, but be used to 
anticipate and explore possible worlds, to imagine, create 
and remember. Machine learning systems have 
demonstrated how recurrent neural networks can discover 
and predict the structure of visual and auditory stimuli by 
forming low level feature detectors, which can then be 
successively organized into complex high level features, 
object categories and conceptual manifolds (LeCun, Bengio, 
Hinton 2015). Deep networks can form hierarchical 
knowledge representations. LSTMs (Hochreiter and 
Schmidhuber 1997) and GRUs (Cho et al. 2014) are 
building blocks for recurrent neural networks that can learn 
sequences of operations. Generative neural networks can 
use the constraints learned from the data to produce possible 
worlds (Dosovitskiy et al. 2015).  
 
While current machine learning systems outperform humans 
in many complex tasks that require the discovery and 
manipulation of causal structures in large problem spaces, 
they are very far from being good models of intelligence. 
Part of this is due to our current learning paradigms, which 
lead to limitations in the generation of compositional 
knowledge and sequential control structures, and will be 
overcome with incremental progress. Recently, various 
researchers have proposed to introduce a unit of 
organization similar to cortical columns into neural learning 
(Hinton et al. 2011). Cortical columns are elementary 
circuits containing between 100 and 400 neurons 
(Mountcastle 1997), and are possibly trained as echo state 
networks (Jaeger 2007) to achieve functionality for function 
approximation, conditional binding and reward distribution. 
In the human neocortex, the columnar units form highly 
interconnected structures with their immediate neighbors, 
and are selectively linked to receptive fields in adjacent 
cortical areas. A cortical area contains ca. 106 to 107 
columns, and may be thought of as a specialized instrument 
in the orchestra of the neocortex. 
 



Beyond current machine learning 
A more important limitation of many current machine 
learning paradigms is their exclusive focus on policy 
learning and classification. Our minds are not classifiers—
they are simulators and experiencers. Like machine learning 
systems, they successively learn to identify features in the  
patterns of the sensory input, which they then combine into 
complex features, and organize into maps. High-level 
features may be integrated into dynamic geometries and 
objects, motor patterns and procedures, auditory structure 
and so on. Features, objects and procedures are sensory-
motor scripts that allow the manipulation of mental content 
and the execution of motor actions. 

 

 
 

Figure 2. Gradual abstraction from sensory patterns to 
mental simulations 

 
Unlike most machine learning systems, our minds combine 
these objects, maps and procedural dynamics into a 
persistent dynamic simulation, which can be used to 
continuously predict perceptual patterns at our systemic 
interface to the environment (figure 2). The processing 
streams formed by the receptive fields of our cortical 
instruments enable the bottom-up cuing of perceptual 
hypotheses (objects, situations etc.), and trigger the top-
down verification of these hypotheses, and the binding of 
the features into a cohesive model state. 

The elements of this simulation do not necessarily 
correspond to actual objects in the universe: they are 
statistical regularities that our mind discovered in the 
patterns at its systemic interface. Our experience is not 
directed on the pattern generator that is the universe, but on 
the simulation produced in our neocortex. Thus, our minds 
cannot experience and operate in an “outer” reality, but in a 
dream that is constrained by the available sensory input and 
the context of previous input (Bach 2011). 
 
Human cognition does not stop at generative simulations, 
however. We can abstract our mental representations into a 
conceptual manifold (figure 3). Concepts can be thought of 
as an address space for our sensory-motor scripts, and they 
allow the interpolation between objects, as well as the 
manipulation and generation of previously unknown objects 
via inference. The conceptual manifold can be organized 

and manipulated using grammatical language, which allows 
the synchronization of concepts between speakers, even in 
the absence of corresponding sensory-motor scripts. (The 
fact that language is sufficient to infer the shape of the 
conceptual manifold explains the success of machine 
translation based on the statistical properties of large text 
corpora, despite the inability of these systems to produce 
corresponding mental simulations.) 
 

 
 

Figure 3: Conceptual abstraction 
 

The cortical conductor 
Cortical columns may be thought of as elementary agents 
that self-organize into the larger organizational units of the 
brain areas as a result of developmental reinforcement 
learning. The activity of the cortical orchestra is highly 
distributed and parallelized, and cannot be experienced as a 
whole. However, its performance is coordinated by a set of 
brain areas that act as a conductor. The conductor is not a 
“homunculus”, but like the other instruments, a set of 
dynamic function approximators. Whereas most cortical 
instruments regulate the dynamics and interaction of the 
organism with the environment (or anticipated, reflected and 
hypothetical environments), the conductor regulates the 
dynamics of the orchestra itself. Based on signals of the 
motivational system, it provides executive function (i.e. 
determines what goals the system commits to at any given 
moment), resolves conflicts between cortical agents, and 
regulates their activation level and parameterization. 
Without the presence of the conductor, our brain can still 
perform most of its functions, but we are sleep walkers, 
capable of coordinated perceptual and motor action, but 
without central coherence and reflection. 



 

 
 

Figure 4: The cortical conductor 
 
In the human brain, the functionality of the conductor is 
likely facilitated via the dorsolateral prefrontal cortex 
(Bodovitz 2008, Safavi 2014, Del Cul 2009), anterior 
cingulate cortex and anterior insula (Fischer et al. 2016). 
The conductor has attentional links into most regions. In 
each moment, it directs its attention to one or a few of the 
cortical instruments, while others continue to play 
unobserved in the background. The conductor may not 
access the activity of the region it attends to in its entirety, 
but it may usually access some of the currently relevant 
processing states and parameters of it. 

To learn and to reflect, the conductor maintains a protocol 
of what it attended to, as a series of links to experiences 
generated by the other cortical instruments. This protocol 
may be used to address the currently active regions, and to 
partially recreate past states of the mental simulation by 
reactivating the corresponding configuration of active 
regions with the parameters of the stored links. The 
reactivation of a past state of the mental simulation will 
generate a re-enactment of a previous world state: a 
memory. Further abstraction of the protocol memory leads 
to the formation of new kinds of sensory motor scripts: an 
autobiographical memory (events that happened to the 
agent), and a procedural memory.  

The reflective access to the protocol allows learning and 
extrapolation of past events, and the act of accessing the 
protocol may of course itself become part of the protocol. 
By accessing the memory of the access to its own protocol, 
the system remembers having had access to experience 
(access consciousness). 

While all cortical regions store information as a result of 
updating their models and learning associations to 
motivational signals, the attentional protocol of the 
conductor is the only place where experience is integrated. 

Information that is not integrated in the protocol cannot 
become functionally relevant to the reflection of the system, 
to the production of its utterances, the generation of a 
cohesive self model, and it cannot become the object of 
access consciousness. 

Phenomenal consciousness may simply be understood as 
the most recent memory of what our prefrontal cortex 
attended to. Thus, conscious experience is not an experience 
of being in the world, or in an inner space, but a memory. It 
is the reconstruction of a dream generated more than fifty 
brain areas, reflected in the protocol of a single region. By 
directing attention on its own protocol, the conductor can 
store and recreate a memory of its own experience of being 
conscious.  
 
The idea that we are not actually conscious in the moment, 
but merely remember having been conscious is congruent 
with known inconsistencies in our experience of 
consciousness, such as subjective time dilation, false 
continuity, and loops in the conscious experience. 

Subjective dilation of time results from states of high 
arousal, for instance during an accident, whereas uneventful 
flow states often lead to a subjective contraction of time. 
Both dilated and contracted time do not correspond to an 
increase or decrease in the actual processing speed of our 
cognitive operations. Instead, they result from a higher or 
lower number of entries in the protocol memory: the 
experienced time interval only seems to be longer or shorter 
with hindsight. An extreme case of a subjective dilation of 
time can happen during dreams, which sometimes play out 
in a physical time interval of a few seconds of REM sleep, 
yet may span hours of subjective time. This may be 
explained by the spontaneous generation of the entire 
dream, rather than the successive experience of each event. 
Hour-long dreams are probably simply false memories. 

False continuity results from gaps in our attention, for 
instance during saccadic movements, or interruptions and 
distractions of gaze. While these breaks in attention may 
lead to missing significant changes in parts of the 
environment that we believe we are attending to,  they are 
not part of the protocol memory and hence our experience 
appears to be unbroken in hindsight. For a considerable 
fraction of our days, we are probably wakeful but not 
conscious. 

Inconsistent experiences of consciousness can be 
explained as false memories, but they do not have subjective 
qualities that makes them appear “less conscious” than 
consistent experiences. Thus, if at least some of our 
conscious experience is a false memory, why not all of it? 
 
Treating consciousness as a memory instead of an actual 
sense of the present resolves much of the difficulty for 
specifying an AI implementation of consciousness: it is 
necessary and sufficient to realize a system that remembers 
having experienced something, and being able to report on 
that memory. 
 



Consciousness and self model 
In the above discussion, I have treated phenomenal 
consciousness in the sense of “the feeling of what it’s like”.  
However, consciousness is often associated with more 
concrete functionality, especially a specific model of self, 
and a set of functionality pertinent to that model. This has 
lead Marvin Minsky (2006) to call consciousness “a suitcase 
term”, a notion that is notoriously hard to unpack.  

Conscious states differ by the configuration and available 
functionality of a cognitive system at a given time. 
However, once we understand how an attentional protocol 
can provide for binding of other cortical functionality into a 
single structure for the purpose of self regulation, we can 
enumerate some of the functionality that corresponds to a 
given conscious state.  
 
Core consciousness is characterized by: 
- a local perceptual space 
- the ability to access mentally represented percepts 
- a current world model 
- directed attention (inwards/outwards, wide/focused) 
- the ability to access and follow concepts and similar 

content 
- the ability to manipulate and create concepts and 

similar content,  
- the presence of an inner stage of currently active, non-

perceptual concepts and associative representations 
 
In deep meditation, the following functionality may be 
absent:  
- an integrated personal self-model (sense of identity) 
- a  sense of one’s own location and perspective in space 
- proprioception (position and state of body and limbs) 
- valences (pleasure and displeasure signals) 
- goals and committed plans 
- the awareness of the current affective state 
- the influence of desires and urges on behavior 
- the ability to create and process discourse (i.e. translate 

mental representations into communicable symbols, and 
vice versa) 

 
Lucid dreams are specific dream states that are different 
from wakefulness by the absence of: 
- access to needs/desires, urges 
- access to sensory perception 
- the ability to exert voluntary control over muscles 
- a biographical memory and protocol  
- a short term biography  
- the ability to separate perceptually grounded content 

from ideas/imaginations 
 
Dreams are usually in addition characterized by the absence 
of: 
- having accessible knowledge about the fact that there 

access to percepts and concepts (access consciousness) 
- a social model of self (self-ascription of beliefs, desires, 

intentions, skills, traits, abilities, personality) 

- the formation of and access to expectations of 
immediate future 

- the ability to influence behavior based on discursive 
thought 

- the ability to relate self-ascribed actions to apparent 
mental causes (sense of agency) 

- the ability to form memories of the current content 
- the ability to reason 
- the ability to construct plans 
- the ability to act on plans 
- the ability to keep goals stable until they are achieved 
- the ability to let go of goals that are unattainable 
- the ability to signal aspects of one's mental state to 

others 
 
Diminished states of consciousness (for instance, in small 
children or due to neurodegenerative diseases) may also 
impair: 
- the ability to influence behavior based on past 

experience (learning) 
- the ability to construct causal models of the 

environment 
- the ability to construct intentional models of agents 
 
The above functionality is part of the general functionality 
of a human-like cognitive agent and has to be implemented 
into its cognitive architecture, either explicitly or via a self-
organized process of reward driven learning (each of them 
can be realized on computational machines). The 
differences between conscious states result from the 
dissociation or impairment of these functions. 
 
Is the conductor a learned or a predefined structure? I 
suspect that the formation of the conductor functionality is 
itself a process of developmental learning, driven by 
rewards for the self-regulation of cognition, and 
developmental cues that regulate the onset and some of the 
parameters of the formation of the structure. Multiple 
personality disorder lends further credibility to the 
hypothesis that the conductor is constructed by reward 
driven neural self-organization. In patients with multiple 
personalities, the different personas usually do not share a 
subjective protocol, biographical and procedural memory. 
But even if we form multiple conductors, they share 
infrastructure (such as linguistic processing, access to the 
attentional network and information transfer via the 
thalamic loop), which ensures that only one of them may be 
online and form memories at any given moment. 

Summary 
The cortical conductor theory (CTC) posits that cortical 
structures are the result of reward driven learning, based on 
signals of the motivational system, and the structure of the 
data that is being learned. The conductor is a computational 
structure that is trained to regulate the activity of other 
cortical functionality. It directs attention, provides executive 
function by changing the activity and parameterization and 



rewards of other cortical structures, and integrates aspects of 
the processes that it attended to into a protocol. This 
protocol is used for reflection and learning. Memories can 
be generated by reactivating a cortical configuration via the 
links and parameters stored at the corresponding point in the 
protocol. Reflective access to the protocol is a process that 
can itself be stored in the protocol, and by accessing this, a 
system may remember having had experiential access. 
For phenomenal consciousness, it is necessary and sufficient 
that a system can access the memory of having had an 
experience—the actuality of experience itself is irrelevant 
(and logically not even possible). 

CTC explains different conscious states by different 
functionality bound into the self construct provided by the 
attentional protocol. The notion of integration is central to 
CTC, however, integration is used in a very different sense 
than in Tononi’s Integrated Information Theory (IIT). In 
CTC, integration refers to the availability of information for 
the same cognitive process, within a causally local structure 
of an agent. In IIT, integration refers to the degree in which 
information is distributed within a substrate. 

CTC is a functionalist theory, and can be thought of as an 
extension to Dennett’s “multiple drafts” model of 
consciousness (1991). CTC acknowledges that the actual 
functionality of perception and cognition is distributed, 
disjoint and fragmentary, but emphasizes the need to 
integrate access to this functionality for a module that in 
turn has access to capabilities for reflection and the 
formation of utterances (otherwise, there would be no self 
model and no report of phenomenal experience). 

CTC also bears similarity to Michael Graziano’s attention 
schema theory of consciousness. Graziano suggests that just 
like the body schema models the body of an agent, its 
attention schema models the activity and shape of its 
attentional network. While the functionality subsumed under 
access consciousness, phenomenal consciousness and 
conscious states, and the required mechanisms are slightly 
different in CTC, we agree with the role of consciousness 
for shaping and controlling attention-related mechanisms. 
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